Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Frontal facial proportions of 12-year-old southern Chinese: a photogrammetric study

  • Charles Yat Cheong Yeung1,
  • Colman Patrick McGrath2,
  • Ricky Wing Kit Wong3,
  • Erik Urban Oskar Hägg4,
  • John Lo5 and
  • Yanqi Yang6Email author
Head & Face Medicine201511:26

https://doi.org/10.1186/s13005-015-0084-7

Received: 13 March 2015

Accepted: 29 July 2015

Published: 14 August 2015

Abstract

This study aimed to establish norm values for facial proportion indices among 12-year-old southern Chinese children, to determine lower facial proportion, and to identify gender differences in facial proportions.

A random population sample of 514 children was recruited. Fifteen facial landmarks were plotted with ImageJ (V1.45) on standardized photos and 22 Facial proportion index values were obtained. Gender differences were analyzed by 2-sample t-test with 95 % confidence interval. Repeated measurements were conducted on approximately 10 % of the cases.

The rate of adopted subjects was 52.5 % (270/514). Intraclass correlation coefficient values (ICC) for intra- examiner reliability were >0.87. Population facial proportion index values were derived. Gender differences in 11 of the facial proportion indices were evident (P < 0.05).

Upper face-face height (N- Sto/ N- Gn), vermilion height (Ls-Sto/Sto-Li), upper face height-biocular width (N-Sto/ExR-ExL) and nose -face height (N-Sn/N-Gn) indices were found to be larger among girls (P < 0.01). Males had larger lower face-face height (Sn -Gn/ N-Gn), mandibulo-face height (Sto-Gn/N-Gn), mandibulo-upper face height (Sto-Gn/N-Sto), nasal (AlR-AlL/N-Sn), upper lip height-mouth width (Sn-Sto/ChR-ChL), upper lip-upper face height (Sn-Sto/N-Sto) and upper lip-nose height (Sn-Sto/N-Sn) indices (P < 0.05).

Population norm of facial proportion indices for 12-year-old Southern Chinese were derived and mean lower facial proportion were obtained. Sexual dimorphism is apparent.

Keywords

Facial proportions Southern Chinese Photogrammetry Population norm Facial attractiveness Diagnosis Treatment outcome evaluation Orthodontics Orthognathic surgery Plastic surgery Cosmetic surgery

Introduction

Facial attractiveness has been a subject of interest since the beginning of recorded history. Bashour reviewed the historical and current literatures and concluded with four important cues that emerge as being the most important determinants of facial attractiveness [1]. They are: (i) averageness, (ii) sexual dimorphism, (iii) youthfulness, and (iv) symmetry. Averageness is regarded as one of the most important factors and supported by various studies [26].

Facial attractiveness has long been of central concern to orthodontic and surgical care given that treatments are capable of changing facial appearance and thereby improve facial attractiveness [7]. It is therefore important to establish population norms to address the averageness cue, and provide insight on sexual dimorphism and youthfulness. Symmetry can be assessed clinically without the need of a norm.

Farkas suggested the use of facial proportion indices to assess aesthetics relating to facial proportions in different facial types [8]. Edler quantified facial attractiveness after orthognathic surgery and found, the greater the improvement in facial proportion indices, the better the aesthetic result as judged by orthodontists and maxillofacial surgeons [6]. These post surgical indices correlated closely to Farkas’ findings. Facial proportion is, therefore, important in both clinical diagnosis and treatment outcome evaluation.

Photogrammetry is increasingly being employed to assess facial characteristics [6, 914]. It is reported to be valid for many measurements [15, 16], reliable [6, 1013, 16, 17] and is a practical approach to clinical analyses and comparison [6, 14, 17].

While facial proportion norms are well-established for Caucasian populations [9], it remains paucity for southern Chinese.

The aims of this study were:
  1. I.

    To provide a database of norm of facial proportion indices for 12-year-old southern Chinese for surgical and orthodontic diagnosis.

     
  2. II.

    To determine sexual dimorphism in facial proportions.

     
  3. III.

    To determine the lower facial proportion

     

Materials and method

Sample

This epidemiological study was conducted in Hong Kong SAR, China among 12-year-old children. Ethical approval was obtained by the local IRB committee (UW 09–453). Ten percent of all secondary schools in Hong Kong SAR were randomly selected and children within each selected school were invited to participate. Written informed consent was obtained from parents and children provided their ascent. A sample of 514 (259 males, 255 females) 12-year-old children was recruited. That was approximately 10 % of the Chinese birth cohort since all 12-year-old children in Hong Kong, spread over all secondary schools, are included in the cohort.

Photographic set up

A scale backdrop of 1 cm increments with a plumbline was set up for a camera-subject distance of around 170 cm. The camera used was Canon EOS 400D (Canon, Shimomaruko, Ohta-ku, Tokyo, Japan) with Canon EF-S 60 mm f/2.8 Macro USM Lens and Canon MR-14EX TTL Macro Ring Lite Flash. Subjects were first instructed to a stand with their eyes looking forward to a vertically standing mirror on the side for a natural head posture and then turn their whole body 90° to face the camera with the lip relax. Glasses or other accessories which may obstruct the face were taken away beforehand. The photo was then taken in natural head posture [18].

Selection of landmarks and proportion indices: (Fig. 1)

Fig. 1

Landmarks and proportional indices identified and measured. N : Nasion; Ex (R,L) : Exocanthion (Right, Left); En (R,L) : Endocanthion (Right, Left); Al (R,L) : Alare (Right, Left); Sn : Subnasale; Ls : Labiale superius; Sto : Stomion; Li : Labiale inferius; Ch (R,L) : Cheilion (Right, Left); Sl : Sublabiale; Gn : Gnathion. N.B. The subject of this photograph is not a subject in the study, the photograph is for illustration purpose and consent was obtained

Fifteen landmarks (Fig. 1) as employed by Farkas and Munro [8] were considered; based on key variables considered by Bishara [1012] (1) visibility in most frontal photographs (2) reliable identification (3) minimally affected by the subject’s grooming, and (4) involved in the measurement of proportional indices of interest. Twenty-two proportion indices (Table 1) employed by Farkas and Munro [8] were selected to be investigated basing on key variables considered by Bishara [1012], and Edler [6] (1) Measurable on a frontal photographs; (2) reliability; and (3) be potentially changed by the effects of orthodontics and/or orthognathic surgery.
Table 1

Descriptions of Facial Proportion Indices abd their respective intraclass correlation coefficients of intra examiner reliability

Index

Description

Intra-examiner reliability (ICC)

Upper face-face height index

N- Sto/ N- Gn ×100

1

Lower face-face height index

Sn -Gn/ N-Gn ×100

0.99

Mandibulo-face height index

Sto-Gn/N-Gn ×100

1

Mandibulo-upper face height index

Sto-Gn/N-Sto ×100

1

Mandibulo-lower face height index

Sto-Gn/Sn-Gn ×100

0.99

Nasal index

AlR-AlL/N-Sn ×100

0.88

Upper lip height-mouth width index

Sn-Sto/ChR-ChL ×100

0.98

Cutaneous-total upper lip height index

Sn-Ls/Sn-Sto ×100

0.95

Vermilion-total upper lip height index

Ls-Sto/Sn-Sto ×100

0.95

Vermilion-cutaneous upper lip height index

Ls-Sto/Sn-Ls ×100

0.95

Vermilion height index

Ls-Sto/Sto-Li ×100

0.96

Chin-mandible height index

Sl-Gn/Sto-Gn ×100

0.9

Upper face height-biocular width index

N-Sto/ExR-ExL ×100

0.99

Intercanthal-nasal width index

EnR-EnL/AlR-AlL ×100

0.99

Nose-face height index

N-Sn/N-Gn ×100

0.99

Nose-mouth width index

AlR-AlL/ChR-ChL ×100

0.98

Upper lip-upper face height index

Sn-Sto/N-Sto ×100

0.98

Upper lip-mandible height index

Sn-Sto/Sto-Gn ×100

0.99

Upper lip-nose height index

Sn-Sto/N-Sn ×100

0.97

Lower lip-face height index

Sto-Sl/Sn-Gn ×100

0.89

Lower lip-mandible height index

Sto-Sl/Sto-Gn ×100

0.9

Lower lip-chin height index

Sto-Sl/Sl-Gn ×100

0.91

Selection of photos

Photos were inspected for their quality and usability in identification of landmarks and validity in measurement of the proportion indices. Photos were excluded if: (1) landmarks were obscured; (2) head tilted up or down significantly; (3) head turned left or right by assessing symmetrical structures; (4) out focused photo; (5) subject wearing glasses; (6) subject showing lip strain or obviously opened mouth; (7) subject smiled; (8) patient partly or completely closed their eyes; and (9) subject previously or currently having orthodontic treatment.

Digitalization of photos

The selected photos were cropped to show the head only. A tangent at superior palpebral sulci was used to determine the vertical level of Nasion [8, 19]. Landmarks were located with ImageJ (V.1.45) (USA National Institutes of Health) and position of each landmark was recorded as a set of X-Y pixel coordinates by the same trained operator. The proportion indices were generated by Microsoft Excel® with the formulas in Table 1.

Statistical analysis

For each facial proportion index, descriptive statistics of mean, standard deviation and range (maximum, minimum) were generated by Statistical Product and Service Solutions (V20) (IBM Corporation, New York, USA). Two sample T- test (with 95 % confidence interval provided) were used to identify any gender difference. The intraclass correlation coefficients [20] were calculated by SPSS (V.19) to assess for intra-examiner reliability, among approximately 10 % of randomly selected subjects that were re-analyzed and compared to original assessments.

Results

Out of 514 subjects, 53 % (270) were included in the analysis, among that, 51 % (137) were female. 47 % (244) were excluded according to the exclusion criteria (as described above). Intra-examiner reliability is presented in Table 1. The intraclass correlation coefficients were all above 0.87 for intra examiner reliability, indicating very good/excellent reliability [20].

Facial proportion index norm values are presented in Table 2. Greatest variance were observed in vermilion cutaneous-upper lip height (Males: 29.58–145.59, Females: 28.81–124.32), vermilion height (Males: 55.26–120.75, Females: 44.59–175.00) and lower lip-chin height (Males: 36.25–135.63, Females: 25.44–131.40) indices. Lowest variances were observed in upper face-face height (Males: 56.73–70.79, Females: 58.35–70.19), lower face-face height (Males: 50.34–62.69, Females: 48.06–60.95) and mandibulo-lower face height (Males: 57.98–72.07, Females: 58.64–70.64) indices. From lower face-face height index, the proportion of lower face was 56 % of total face height. The proportion of upper lip height (Sn-Sto), lower lip height (Sto-Sl) and chin height (Sl-Gn) were found to be 35.12, 27.33 and 37.55 % respectively.
Table 2

Mean, standard deviation, maximum, minimum and p-values of statistical tests (2 sample t-test) of facial proportion indices

 

Male (n = 133)

Female (n = 137)

 
 

Mean

SD

Min.

Max.

Mean

SD

Min.

Max.

P-value

Upper face-face height index

63.27

2.58

56.73

70.79

63.92

2.36

58.35

70.19

0.031*

Lower face-face height index

56.75

2.44

50.34

62.69

55.25

2.59

48.06

60.95

0.000***

Mandibulo-face height index

36.73

2.58

29.21

43.27

36.08

2.36

29.81

41.65

0.031*

Mandibulo-upper face height index

58.33

6.54

41.25

76.26

56.66

5.80

42.47

71.37

0.028*

Mandibulo-lower face height index

64.69

2.83

57.98

72.07

65.29

2.63

58.64

70.64

0.075

Nasal index

77.12

5.69

64.32

93.83

73.99

6.54

60.70

93.94

0.000***

Upper lip height-mouth width index

52.02

6.47

37.09

71.21

49.36

6.21

36.46

67.05

0.001**

Cutaneous-total upper lip height index

62.16

6.84

40.72

77.17

61.99

6.82

44.58

77.63

0.838

Vermilion-total upper lip height index

37.84

6.84

22.83

59.28

38.01

6.82

22.37

55.42

0.837

Vermilion-cutaneous upper lip height index

63.00

19.83

29.58

145.59

63.30

18.37

28.81

124.32

0.898

Vermilion height index

76.61

12.08

55.26

120.75

82.21

19.80

44.59

175.00

0.005**

Chin-mandible height index

58.12

5.57

42.44

73.39

58.78

6.03

43.22

79.72

0.352

Upper face height-biocular width index

85.33

5.01

73.41

98.37

86.92

4.54

74.69

98.24

0.007**

Intercanthal-nasal width index

95.22

6.70

79.48

112.82

95.37

7.75

77.32

113.96

0.871

Nose -face height index

43.25

2.44

37.31

49.66

44.75

2.59

39.05

51.94

0.000***

Nose-mouth width index

86.22

7.03

68.69

109.87

84.70

7.02

70.98

109.49

0.075

Upper lip-upper face height index

31.65

2.31

25.60

37.19

30.02

2.55

24.28

35.99

0.000***

Upper lip-mandible height index

54.87

6.76

38.75

72.48

53.42

6.22

41.57

70.55

0.067

Upper lip-nose height index

46.46

4.96

34.41

59.21

43.08

5.26

32.07

56.23

0.000***

Lower lip-face height index

27.05

3.43

17.07

35.81

26.87

3.80

12.91

36.22

0.693

Lower lip-mandible height index

41.88

5.57

26.61

57.56

41.22

6.03

20.28

56.79

0.352

Lower lip-chin height index

73.66

17.05

36.25

135.63

71.94

18.03

25.44

131.40

0.421

*P-value<0.05, **P-value<0.01, ***P-value<0.001

Gender differences in 11 of the 22 facial proportion indices assessments were apparent. For females, upper face-face height (P < 0.05), vermilion height (P < 0.001), upper face height-biocular width (P < 0.01) and nose -face height (P < 0.001) indices were larger. In contrast, lower face-face height (P < 0.001) mandibulo-face height (P < 0.05), mandibulo-upper face height (P < 0.05), nasal (P < 0.001), upper lip height-mouth width (P = 0.001), upper lip-upper face height (P < 0.001) and upper lip-nose height (P < 0.001) indices were larger in males. The index with the largest mean percentage difference (7.56 %) between genders was upper lip-nose height index.

Discussion

This study was conducted on a random population sample of 12-year-old children, as opposed to small, non-random, convenient samples as described in the majority of photogrammetric studies published to date [2123]. With the rate of adopted subjects of 53 %, there are a number of factors to account for the loss of samples including less than ideal cooperation from 12 years old children, time constraint and past or current orthodontic treatment. This reflects the difficulties in performing population-wide photogrammetric studies under non-clinical/outreach settings in the community. Nevertheless, the sample size was sufficient to provide populations norms and to discover gender differences and it is one of the largest samples for photogrammetric study with random population sample and largest range of assessment of proportion indices.

A smaller local study analyzed facial profiles with photogrammetry on only 82 12-year-old southern Chinese with just five proportion indices [21]. Findings were consistent with the present study, with mean differences less than 1 standard deviation for four indices: lower-face-face height index, mandibulo-lower face height, intercanthal-nasal width and lower lip-face height indices. The only inconsistency was reported for the lower lip-face height index, which they reported a statistically significant gender difference. In comparison with northern America Caucasian population [8], the only index that differed by more than 2 standard deviation is the nose-mouth width index for both males and females. This indicates that southern Chinese have a relatively wider nose (AlR-AlL) or narrower mouth (ChR-ChL) compared to Caucasians. The nasal index for males, upper face height-biocular width index and upper-lip-mandible height index for females were larger in southern Chinese by almost 2 standard deviations. The reverse was found for the female mandibulo-upper face height index.

Of a particular importance to orthodontics and orthognathic surgery is the lower face proportion. The lower face height in our study was found to be 56.7 %(male) and 55.3 %(female) of the total face height corresponding well to lateral cephalometric study [24] (M:56.5 %, F:55.7 %), photogrammetric study [25] in Nigerian adults (M:58.15 %, F:56.97 %) and anthropotmetric study [8] on 12-year-old Caucasian children (M:59.7 %, F:59.5 %). Regarding the proportions of the lower third of the face, Renaissance artist Francesca [8] suggested that the lower lip and chin should make up two thirds of the lower one third of face and lower lip and chin should have the same proportion, this is widely adopted in orthodontics and surgery text. Farkas had found proportionality from anthropometric study [8], which is 31.2, 26.2 and 42.6 % for Sn-Sto, Sto-Sl and Sl-Gn. In our study, the proportion was 35.1, 27.3 and 37.6 % respectively.

Farkas [8], Song [26] and Bao [27] reported that there gender difference in facial dimension and proportions but the average differences were small. The results from this study generally supports Farkas’ conclusion. In this study, 11 (50 %) out of 22 facial proportion indices showed significant gender differences. All except 4 of the indices had a percentage difference of less than 5 %. They are upper lip-nose height (7.6 %), vermilion height (7.0 %), upper lip-upper face height (5.3 %) and upper lip height-mouth width (5.3 %) indices.

The norm facial proportion indices obtained can be used for clinical assessment and comparison with same analysis and photogrammetric technique. Frontal photogrammetry was widely used to assess treatment change [6, 912], attractiveness [13, 28, 29], comparisons between different ethnic groups [13, 14, 30] and growth [1012, 31] in additional to daily use for clinical diagnosis and treatment planning.

To conclude, the following were the key findings of this study.
  1. I.

    Population norm of facial proportion indices are obtained from the mean values of this study and can serve as a reference to evaluate facial proportions in treatment planning and treatment outcome assessment using the same frontal photogrammetric analysis.

     
  2. II.

    Gender differences in facial proportion were found in 11 indices. Lower face-face height index, mandibulo-face height index, mandibulo-upper face height index, nasal index, upper lip height-mouth width index, upper lip-upper face height index and upper lip-nose height index were significantly larger in males. The findings were opposite for upper face-face height index, vermilion-height index, upper face height-biocular width index and nose -face height index.

     
  3. III.

    The lower face height is found to be 56.7 %(male) and 55.3 %(female) of the total face height and proportions of lower facial height were 35.1, 27.3 and 37.6 % for Sn-Sto, Sto-Sl and Sl-Gn respectively.

     
  4. IV.

    Ethnic differences were evaluated by comparing with a North American Caucasian population, southern Chinese was found to have a relatively wider nose (AlR-AlL) or narrower mouth (ChR-ChL) compared to the Whites.

     

Declarations

Acknowledgment

I would like to thank Mr Shadow Yeung for his technical and statistical support, Miss Angela for the permission of use of her frontal photo, Miss Karen Lau for editing and to all who have collaborated in any respects of this research project.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong
(2)
Department of Periodontology and Public Health, Faculty of Dentistry, The University of Hong Kong
(3)
Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong
(4)
Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong
(5)
Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong
(6)
Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong

References

  1. Bashour M. History and current concepts in the analysis of facial attractiveness. Plast Reconstr Surg. 2006;118(3):741–56.View ArticlePubMedGoogle Scholar
  2. Symons D. The evolution of human sexuality. 1st ed. New York: Oxford University Press; 1979.Google Scholar
  3. Langlois JH, Roggman LA. Attractive faces are only average. Psychol Sci. 1990;1:115–21.View ArticleGoogle Scholar
  4. Strzalko J, Kaszycka KA. Physical attractiveness: interpersonal and intrapersonal variability of assessments. Soc Biol. 1991;39:170–6.Google Scholar
  5. Grammer K, Thornhill R. Human facial attractiveness and sexual selection: the role of symmetry and averageness. J Comp Psychol. 1994;108:233–42.View ArticlePubMedGoogle Scholar
  6. Edler R, Agarwai P, Wertheim D, Greenhill D. The use of anthropometric proportion indices in the measurement of facial attractiveness. Eur J Orthod. 2006;28(3):274–81.View ArticlePubMedGoogle Scholar
  7. Mackley RJ. An evaluation of smiles before and after orthodontic treatment. Angle Orthod. 1993;63:183–9.PubMedGoogle Scholar
  8. Farkas LG, Munro IR. Anthropometric facial proportions in medicine. 1st ed. Springfield: Thomas; 1987.Google Scholar
  9. Gode S, Tiris FS, Akyildiz S, Apaydin F. Photogrammetric analysis of soft tissue facial profile in Turkish Rhinoplasty population. Aesthetic Plast Surg. 2011;35:1016–21.View ArticlePubMedGoogle Scholar
  10. Bishara SE, Jorgensen GJ, Jakobsen JR. Changes in facial dimensions assessed from lateral and frontal photographs. Part I-Methodology. Am J Orthod Dentofacial Orthop. 1995;108:389–93.View ArticlePubMedGoogle Scholar
  11. Bishara SE, Jorgensen GJ, Jakobsen JR. Changes in facial dimensions assessed from lateral and frontal photographs. Part II-Results and conclusions. Am J Orthod Dentofacial Orthop. 1995;108:489–99.View ArticlePubMedGoogle Scholar
  12. Bishara SE, Cummins DM, Jakobsen JR. “A computer assisted photogrammetric analysis tissue changes after orthodontic treatment. Part II: Results. Am J Orthod Dentofacial Orthop. 1995;108:38–47.View ArticlePubMedGoogle Scholar
  13. Rhee SC, Dhong ES, Yoon ES. Photogrammetric facial analysis of attractive Korean entertainers. Aesthetic Plast Surg. 2009;33:167–74.View ArticlePubMedGoogle Scholar
  14. Sim RS, Smith JD, Chan AS. Comparison of the aesthetic facial proportions of Southern Chinese and White women. Arch Facial Plast Surg. 2000;2:113–20.View ArticlePubMedGoogle Scholar
  15. Farkas LG, Bryson W, Klotz J. Is photogrammetry of face reliable? Plast Reconstr Surg. 1980;66:346–55.View ArticlePubMedGoogle Scholar
  16. Guyot L, Dubuc M, Richard O, Philip N, Dutour O. Comparison between direct clinical and digital photogrammetric measurements in patients with 22q11 microdeletion. Int J Oral Maxillofac Surg. 2003;32:246–52.View ArticlePubMedGoogle Scholar
  17. Muradin MSM, Rosenberg A, Bilt AV, Stoelinga JW, Koole R. The reliability of frontal facial photographs to assess changes in nasolabial soft tissues. Int J Oral Maxillofac Surg. 2007;36:728–34.View ArticlePubMedGoogle Scholar
  18. Cooke MS, Wei SH. The reproducibility of natural head posture: a methodological study. Am J Orthod Dentofacial Orthop. 1988;93:280–8.View ArticlePubMedGoogle Scholar
  19. Ashley-Montagu MF. The location of the nasion in the living. Am J Phys Anthropol. 1935;20:81–95.View ArticleGoogle Scholar
  20. Stanish WM, Taylor N. Estimation of the intraclass correlation coefficient for the analysis of covariance model. Am Stat. 1983;37:221–4.Google Scholar
  21. Yuen SW, Hiranaka DK. A photographic study of the facial profiles of southern Chinese adolescents. Quintessence Int. 1989;20:665–76.PubMedGoogle Scholar
  22. Porter JP. The average African American male face. Arch Facial Plast Surg. 2004;6:78–81.View ArticlePubMedGoogle Scholar
  23. Sepehr A, Mathew PJ, Pepper JP, Karimi K, Devcic Z, Karam AM. The Persian Woman’s face: a photogrammetric analysis. Aesthetic Plast Surg. 2012;36:687–91.View ArticlePubMedGoogle Scholar
  24. Saksena SS, Walker GE, Bixler D. A Clinical atlas Roentgencephalometry in norma lateralis. New York: Liss; 1987.Google Scholar
  25. Loveday OE. Photogrammetric analysis of soft tissue profile of the face of igbos in port harcourt. Asian J Med Sci. 2011;3(6):228–33.Google Scholar
  26. Song WC, Kim JI, Kim SH, Shin DH, Hu KS, Kim HJ, et al. Female-to-male proportion of head and face in Koreans. J Craniofac Surg. 2009;20:356–61.View ArticlePubMedGoogle Scholar
  27. Bao B, Yu S, Cai Y. The analysis of frontal facial soft tissue of normal native adult of Han race of Guangdong Province by using the computer assisted photogrammetric system. Hua Xi Kou Qiang Yi Xue Za Zhi. 1997;15(3):266–75.PubMedGoogle Scholar
  28. Kiekens RM, Kuijpers Jagtman AM, Van’t Hof MA, Van’t Hof BE, Straatman H, Maltha JC. Facial esthetics in adolescents and its relationship to “ideal” ratios and angles. Am J Orthod Dentofacial Orthop. 2008;133:188. 1-8.View ArticlePubMedGoogle Scholar
  29. Kiekens RM, Kuijpers-Jagtman AM, van’t Hof MA, van’t Hof BE, Maltha JC. Putative golden proportions as predictors of facial esthetics in adolescents. Am J Orthod Dentofacial Orthop. 2008;134:480–3.View ArticlePubMedGoogle Scholar
  30. Jeffries JM, DiBernardo B, Rauscher GE. Computer analysis of the African-American face. Ann Plast Surg. 1995;34:318–22.View ArticlePubMedGoogle Scholar
  31. Ferring V, Pancherz H. Divine proportions in the growing face. Am J Orthod Dentofacial Orthop. 2008;134:472–9.View ArticlePubMedGoogle Scholar

Copyright

© Yeung et al. 2015

Advertisement