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Introduction
Artificial Intelligence (AI) approaches are gaining 
increased attention to support orthodontic diagnosis 
and treatment planning [1]. A domain yet to be explored 
is the integration of AI to assist dentists and pediatri-
cians to accurately diagnose orthodontic treatment need. 
This particular application is promising because dentists 
and pediatricians often play a crucial role in the initial 
diagnosis of malocclusion which prompts for referral of 
the patients to the orthodontic specialist [2]. However, 
research indicates that in up to 45% of the cases, the ini-
tial referral is incorrect due to inadequate application of 
national indication systems that determine treatment 
needs such as the British Index of Orthodontic Treat-
ment Need (IOTN) [3]. Inadequate application is also 
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Abstract
Background To support dentists with limited experience, this study trained and compared six convolutional neural 
networks to detect crossbites and classify non-crossbite, frontal, and lateral crossbites using 2D intraoral photographs.

Methods Based on 676 photographs from 311 orthodontic patients, six convolutional neural network models were 
trained and compared to classify (1) non-crossbite vs. crossbite and (2) non-crossbite vs. lateral crossbite vs. frontal 
crossbite. The trained models comprised DenseNet, EfficientNet, MobileNet, ResNet18, ResNet50, and Xception.

Findings Among the models, Xception showed the highest accuracy (98.57%) in the test dataset for classifying 
non-crossbite vs. crossbite images. When additionally distinguishing between lateral and frontal crossbites, average 
accuracy decreased with the DenseNet architecture achieving the highest accuracy among the models with 91.43% 
in the test dataset.

Conclusions Convolutional neural networks show high potential in processing clinical photographs and detecting 
crossbites. This study provides initial insights into how deep learning models can be used for orthodontic diagnosis of 
malocclusions based on intraoral 2D photographs.
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found when applying the national Kieferorthopädische 
Indikationsgruppe (KIG) indication system in Germany 
by various studies [4–6]. Incorrect use of these indication 
systems and a lack of basis for referral can increase pres-
sure on the service providers and prolong waiting lists 
[7]. Guidelines do not seem to be able improve the qual-
ity of referrals significantly [3]. Hence, alternative strat-
egies for improving detection of malocclusion among 
primary dental practitioners are required.

Malocclusion diagnosis requires the evaluation of 
images such as intra- and extraoral photographs, x-rays, 
and scans. Neural networks in particular have long been 
recognized for their potential in image analysis [8], but 
machine learning in orthodontics is still a developing 
field, leaving numerous unexplored opportunities [9].

The extent to which machin learning can assist cli-
nicians in recognizing the indications for orthodontic 
treatment remains a less-explored domain within the 
broader landscape of AI applications in orthodontics. So 
far, AI has been successfully applied to assess crowding 
on occlusal intraoral pictures [10], to detect landmarks in 
cephalometric images [11], and to predict the necessity 
of orthognathic surgery [12] based on cephalograms [13]. 
Existing AI studies in orthodontics are predominantly 
centered on x-ray imaging. Machine learning applica-
tions on other sources of imaging data such as intra- and 
extraoral photographs and scans are still limited [10]. In 
general, demonstrating the true value of deep learning in 
clinical applications requires comprehensive studies that 
assess the robustness and generalizability of deep learn-
ing models on diverse datasets [11].

The aim of this study was to examine how effectively 
convolutional neural networks can detect crossbites as 
a malocclusion category using clinical intraoral photo-
graphs. Multiple convolutional neural networks were 
trained and compared regarding their accuracy in iden-
tifying crossbites as well as classifying the specific type 
of crossbite (frontal vs. lateral). The present study con-
tributes to assessing the potential of machine learning 
approaches in orthodontics. The comparative analysis 
helps to identify suitable models for accurately detecting 
lateral and frontal crossbites as malocclusion categories 
termed KIG M4 and K4 in the German classification sys-
tem, respectively. The present study provides a first step 
into developing AI-based systems that can assist examin-
ers who initiate orthodontic treatment in determining if 
and when to refer a patient for orthodontic treatment.

Materials and methods
Dataset
The dataset used in this study was obtained from the 
Section of Orthodontics, Aarhus University, Denmark. 
It includes patients who underwent an initial orthodon-
tic consultation at the Section of Orthodontics, Aarhus 

University, Denmark between 01.07.2018 and 31.07.2023. 
The dataset contains randomly selected clinical pho-
tographs taken for orthodontic diagnoses and treat-
ment planning, hence representing the whole patient 
cohort seen during this time interval. Photos displaying 
the occlusion from anterior, left, and right sides were 
included for each patient. Exclusion criteria were cross-
bites in deciduous dentitions and orthodontic treatment 
in progress. For patient anonymity, the intraoral image 
dataset was used without personal information such as 
name, age, or gender. The images were first labelled as 
non-crossbite and crossbite. In a second step, the cross-
bite photographs were further labelled as lateral or frontal 
crossbite. The analysis applied the German classifica-
tion system “Kieferorthopädische Indikationsgruppen”, 
which determines health insurance cover of treatment 
and distinguishes between frontal crossbites (M4) (Fig. 1) 
and unilateral crossbites (K4) (Fig. 2) among others. If a 
patient exhibited both a lateral and frontal crossbite, the 
images were labelled as frontal crossbite in line with the 
KIG classification as M4 instead of K4 (Fig. 3). The label-
ling was initially done by S.V. and independently repeated 
by M.S. without any conflicts.

Fig. 2 Lateral crossbite

 

Fig. 1 Frontal crossbite
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Preprocessing of the dataset
All preprocessing was performed using the PyTorch 
2.0.1  framework (The Linux Foundation, San Francisco, 
CA, USA) for Python 3.10.12. For the training and test-
ing of the models, 10% of the data was randomly split and 
only used for testing purposes, whereas the 90% of the 
images were used for training and validation. All images 
were resized to 224 × 224 or to 299 × 299 pixels to satisfy 
the respective model’s input requirements.

To enhance the performance of the deep learning mod-
els with a limited number of original samples and to avoid 
overfitting, data augmentation was applied dynamically 
during the training process. Hence, each time an image 
was loaded during training, it was randomly modified 
using specified transformations. These transformations 
included random horizontal flips, rotations of up to 20°, 
and brightness adjustments by up to 20%. Such dynamic 
augmentation ensured that the model encountered varied 
versions of the images throughout the training. Hence, 
it ensures that the model learns to generalize from the 
underlying patterns in data, thereby improving its gener-
alization capabilities without increasing the actual num-
ber of images in the dataset. This process was repeated 
across all folds during the k-fold cross-validation.

Classification models
Neural networks are a set of algorithms designed to rec-
ognize patterns. They function by processing input data 
such as images through layers of artificial neurons, which 
are inspired by human brain neurons. Convolutional 
neural networks (CNNs), a type of neural network, are 
increasingly used in medical image diagnostics for tasks 
such as detection, segmentation, and classification of 
anatomical structures. To classify the occlusions, we used 
several different CNN models which have previously 

been successfully applied in other image classification 
studies [13].

ResNet18 and ResNet50
The ResNet architecture, introduced by He et al. [14], 
uses residual blocks, which are blocks stacked on top of 
each other. The ResNet architecture incorporates skip 
connections, which enable the network to bypass certain 
layers. It also integrats batch normalization between lay-
ers, which makes the training process more stable and 
faster. ResNet has several variants differing in the num-
ber of neural network layers, such as the ResNet18 and 
ResNet50 with 18 and 50 layers, respectively, which are 
applied in this study.

MobileNet
Howard et al. developed MobileNet as an architecture 
for applications where computational resources and pro-
cessing time are limited. Its key innovation is the use of 
depth-wise separable convolutions instead of standard 
convolutions used in many other neural networks. This 
approach splits the standard convolution into a sum-
mation of two distinct steps: a depth-wise convolution, 
which filters the input, and a pointwise convolution, 
which combines the filtered results using a 1 × 1-dimen-
sional filter [15].

Xception
Xception model, a deep learning architecture proposed 
by Chollet, is inspired by the Inception architecture. 
Xception replaces the layers with depth-wise separable 
convolution to filter and combine information in a more 
efficient way. It combines these depth-wise separable 
convolutions with residual connections, which help the 
network to learn better by allowing information to skip 
certain layers [16].

DenseNet
Developed by Huang et al., DenseNet is a deep convolu-
tional neural architecture with dense connections among 
its units, where each layers connects directly with each 
subsequent layer in a feed-forward manner [17]. This 
means that instead of just passing information from one 
layer to the next, each layer receives inputs from all pre-
vious layers and passes its own output to all subsequent 
layers.

EfficientNet
Introduced by Tan et al. [18], EfficientNet implements a 
scaling method that uniformly adjusts all three dimen-
sions of the neural network: depth, width, and resolu-
tion. In this context, ‘depth’ refers to the number of 
layers, ‘width’ represents the number of channels in each 
layer, and ‘resolution’ indicates the input image size. This 

Fig. 3 Combination of a frontal crossbite and lateral crossbite. Note: Ac-
cording to the malocclusion category system (Kieferorthopädische Indika-
tionsgruppe, KIG) this image would be classified as a M4 (frontal crossbite) 
and not K4 (lateral crossbite)
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scaling methodology replaces arbitrary adjustments with 
a systematic approach, ensuring consistent scaling across 
all dimensions. This approach is based on a smaller based 
model, which is expanded using scaling coefficients pre-
determined through a grid search. In our implementa-
tion, we adopted the EfficientNet-B0 variant [18].

Model training
Model training was performed using Pytorch 2.0.1. In 
the initial step the models were trained to classify non-
crossbite vs. crossbite. In the second step the models 
where trained to classify non-crossbite vs. lateral cross-
bite vs. frontal crossbite. Given the limited sample size of 
the dataset, we used k-fold cross-validation with k = 10. 
To adjust the convolutional neural network models for 
our classification task, we used transfer learning. Con-
sequently, we used the network layers of the respective 
model pre-trained on the ImageNet dataset [19]. We 
replaced the last layer (classifier) with a new output layer 
to conform to the number of classes in our dataset (e.g. 
two and three). For the output layer, SoftMax activation 
was used for all models. The initial learning rate was set 
to 0.001. The cross-entropy loss function (binary for two-
classes and categorical for three-class classification) was 
used. AdamW optimizer was applied to reduce the risk of 
overfitting [20]. Batch size was 16. The number of epochs 
was set to 20 with an early stopping criterion if validation 
loss did not improve for three consecutive epochs.

Model evaluation
The models were tested on the remaining (10%) test data 
that were not included in the training. Accuracy, preci-
sion, recall (sensitivity), specificity, F1 score, and Cohen’s 
Kappa were calculated, and confusion matrices were 
determined for each model and tasks. Additionally, we 
mapped the Receiver Operating Characteristic (ROC) 
and calculated the corresponding Area Under the Curve 
(AUC) value.

Results
Dataset
The inclusion and exclusion criteria resulted in a data-
set of 676 photographs from 311 patients. The labelling 

resulted in 260 non-crossbite images, 258 frontal cross-
bite images and 158 lateral crossbite images.

Crossbite vs. non-crossbite
All models trained to classify crossbite vs. non-crossbite 
showed high accuracy. The best performance over all 
k-folds were achieved by Xception with 98.57% accu-
racy in the validation dataset (Table 1). This was closely 
followed by MobileNet (98.55%), ResNet18 (97.14%), 
DenseNet (97.10%), and EfficientNet (97.10%). Slightly 
performing worse than the other architectures, ResNet50 
model exhibited the lowest accuracy with a maximum of 
91.43% over all k-folds. Specificity ranged from 100.00% 
for Xception and ResNet18 to 90.91% for ResNet50. 
For precision, again Xception again outperformed the 
other architectures with a value of 98.94%. All models 
demonstrated robust recall values over 90%. In terms of 
the F1-score, MobileNet achieved the highest score of 
98.49%. The high Cohen’s Kappa values across models 
indicate a strong agreement between the predicted and 
actual classifications; only ResNet50 showed a lower per-
formance with a value of 81.93%.

Results on the test set and mean metrics over all k-folds 
are presented in Tables A1 and A2 in the appendix. The 
confusion matrices (Fig.  4) displayed a high number of 
true positives and true negatives, with a low count of 
false positives and false negatives. The Receiver Operat-
ing Characteristic (ROC) curves as well as the observed 
Area Under the Curve (AUC) indicated strong perfor-
mance of all models (Fig. 5).

Lateral crossbite vs. frontal crossbite vs. non-crossbite
The models which were trained to not only detect a 
crossbite, but also differentiate between lateral and fron-
tal crossbites performed slightly worse on average than 
the models that only classified crossbite vs. non-cross-
bite. The highest accuracy over all k-folds was achieved 
by the DenseNet model with 91.43%, closely followed by 
MobileNet (91.30%), EfficientNet (90.00%), and Xception 
(88.57%) in the validation dataset (Table 2). ResNet18 as 
well as ResNet50 lagged behind with 76.81% and 74.29%, 
respectively. Notably, the accuracy metrics for the fron-
tal crossbite group were lower than in the other groups 

Table 1 Highest model accuracy metrics on the test set for two-class classification over all k-folds. Note: Highest values for each metric 
highlighted in bold
Model Accuracy (in %) Specificity (in %) Precision (in %) Recall (sensitivity) 

(in %)
F1-score (in %) Cohen’s Kappa (in %)

ResNet18 97.14 100 98.00 95.45 96.60 93.20
ResNet50 91.43 90.91 90.48 91.61 90.96 81.93
MobileNet 98.55 97.62 98.21 98.81 98.49 96.98
Xception 98.57 100 98.94 97.92 98.40 96.80
DenseNet 97.10 95.24 96.55 97.52 96.99 93.99
EfficientNet 97.10 95.65 96.00 97.83 96.81 93.62
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across the models. Confusion matrices for each model 
and ROC Curve including the computed AUC value 
are visualized in Figs. 6 and 7. Tables A3 and A4 in the 
appendix present further results.

Discussion
This study implemented various deep learning architec-
tures to compare their performance to classify crossbites. 
For distinguishing between cross-bite vs. non-crossbite, 
all models achieved high accuracy suggesting that the 
different models were effective in learning the distin-
guishing features between the two classes. The excellent 
accuracy achieved by Xception and MobileNet particu-
larly underscores the potential of convolutional neural 
networks in capturing occlusal and orthodontic features 

in 2D intraoral images. Their strong performance indi-
cates that depth-wise separable convolutions and skip 
connections as architectural choices can effectively 
extract the relevant features from the images. Efficient-
Net, DenseNet, and ResNet18 demonstrate similarly high 
accuracy, which suggests that multiple approaches can 
effectively capture the essential features for this binary 
classification task. The high accuracies for these models 
are in line with applications of neural networks to diag-
nose the indications of orthognathic surgery [21–23]. 
Only ResNet50 slightly lagged behind in terms of per-
formance in this binary classification task, possibly due 
to the ResNet50’s overly complex structure leading to 
overfitting.

Fig. 4 Crossbite vs. non-crossbite: Confusion matrices. Note: Illustration of respective model with highest accuracy on test data among all k-folds
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The reduced accuracy in the three-class classification 
task highlights the increased difficulty for models when 
distinguishing between frontal and lateral crossbites, 
compared to the simpler binary classification of crossbite 
versus non-crossbite. Besides, the reduced accuracy is 
likely related to the reduced number of images available 
for training in the crossbite groups as the crossbite group 
is split into lateral and frontal crossbites. This is sup-
ported by the comparatively lower accuracy metrics for 

these groups. To successfully train neural networks, the 
training dataset needs to be sufficiently large [24]. The 
models faced an additional challenge related to the lateral 
crossbite groups because this class can exhibit features 
overlapping with other classes: If the patient exhibited 
both a frontal and lateral crossbite, the malocclusion was 
classified as a frontal crossbite (KIG M4) in line with the 
KIG classification system [25]. Other authors have also 
reported a drop in performance when adding additional 

Fig. 5 Crossbite vs. non-crossbite: Receiver Operating Characteristic (ROC) curves. Note: Illustration of respective model with highest accuracy on test 
data among all k-folds
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Table 2 Highest model accuracy metrics for three-class classification over all k-folds. Note: Highest values for each metric highlighted 
in bold
Model Accuracy (in %) Specificity (class 

2, in %)
Precision (average, 
in %)

Recall (Sensitivity) 
(average, in %)

F1-Score (in %) Cohen’s 
Kappa 
(in %)

ResNet18 76.81 100 86.07 59.12 55.38 55.50
ResNet50 74.29 100 83.24 61.62 54.51 56.89
MobileNet 91.30 91.67 91.72 83.60 84.00 91.67
Xception 88.57 93.94 85.80 82.60 83.20 81.52
DenseNet 91.43 93.94 88.46 88.90 88.60 86.38
EfficientNet 90.00 96.15 89.84 89.00 89.18 84.84

Fig. 6 Crossbite vs. frontal crossbite vs. lateral crossbite: Confusion matrices. Note: Illustration of respective model with highest accuracy on test data 
among all k-folds
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classes to a classification task, for example in the context 
of predicting the binary decision of performing orthog-
nathic surgery vs. the more detailed diagnosis of surgery 
type and extraction decision [22]. Although accuracy 
decreases compared to the binary classification crossbite 
vs. non-crossbite, the accuracy is still over 90% for some 
of the neural networks, demonstrating their potential to 
further distinguish between frontal and lateral crossbites.

In the present dataset, DenseNet’s architecture seems 
to be best suited to learn and predict the features of 

non-crossbite, lateral and frontal crossbite, despite the 
small sample size. The comparatively poor performance 
by both the ResNet50 and ResNet18 is in line with Ryu et 
al. [26] who found that the ResNet architecture does not 
perform as efficiently as other neural networks to detect 
crowding in orthodontic images.

The performance dropped when differentiating 
between frontal and lateral crossbites as opposed to 
the binary classification crossbite vs. non-crossbite 
prompt a critical reflection on the trade-offs in clinical 

Fig. 7 Crossbite vs. frontal crossbite vs. lateral crossbite: Receiver Operating Characteristic (ROC) curves. Note: Illustration of respective model with high-
est accuracy on test data among all k-folds. Class 0 = frontal crossbite, class 1 = lateral crossbite, class 2 = non-crossbite
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applications. The lower accuracy when differentiating 
lateral from frontal crossbites might be acceptable if the 
clinical implications of differentiating crossbites out-
weigh the simplicity and higher accuracy of a binary 
classification.

Overall, the results highlight that CNN have high 
potential to reliably support the detection of crossbites. 
Possible applications include the remote diagnosis of 
dentofacial deformities and virtual treatment monitoring, 
for example Dental Monitoring. Preliminary assessments 
through CNNs on uploaded patient images can ben-
efit patients in remote areas with limited access to orth-
odontic specialists. Virtual treatment monitoring allows 
for continuous patient assessment without the need for 
frequent in-person visits. Such applications of CNN can 
also support dentists or pediatricians as frequent ini-
tiators for orthodontic treatment to identify orthodontic 
issues early, allowing for timely intervention and poten-
tially reducing the severity and duration of treatment.

The study has several limitations. Firstly, our evalua-
tion was restricted to lateral and frontal crossbites and 
did not include other types of malocclusions; a model’s 
performance on a single task does not necessarily predict 
its performance on another. The results might be limited 
due to utilization of 2D intraoral photographs. For exam-
ple, detecting a crossbite on the second molars based on 
2D images can be challenging because the second molars 
which are not fully erupted at treatment start might not 
be fully captured. Additionally, the clinical photographs 
were taken using intraoral mirrors, which can bias the 
images and lead to under- or overestimation of the pres-
ence and severity of posterior and anterior crossbites 
[27]. Hence, a direct clinical examination can provide a 
more insightful analysis, and the value of image analy-
sis is more pronounced in the absence of such a clinical 
examination. Although the results show high accuracy, 
the relatively small dataset size might limit the generaliz-
ability of the models. Furthermore, a visual explanation 
of the models’ output (e.g. Gradient-weighted Class Acti-
vation Mapping) was not included in this study.

To overcome these limitations, future research should 
also assess other malocclusion classifications commonly 
captured in national indication systems, based on 3D 
scans. Further deep learning models should be tested 
and compared in larger datasets to demonstrate the full 
potential, generalizability, and explainability of these 
approaches. In particular, future research should focus 
on improving accuracy for distinguishing between frontal 
and lateral crossbites.

Conclusions
This study introduces several deep learning models 
designed to detect specific malocclusion traits and differ-
entiate between frontal and lateral crossbites. The models 

classifying non-crossbite vs. crossbite show very high 
accuracy, which highlights their potential in detecting 
this malocclusion. The models that additionally distin-
guish between lateral and frontal crossbites show slightly 
lower accuracy, indicating that they are limited by the 
smaller sample size and additional challenge of distin-
guishing within the crossbite group. Overall, the results 
suggest that convolutional neural network models are 
capable of learning and processing intraoral 2D photo-
graphs for orthodontic diagnosis. This can provide a first 
step to employ AI-based systems to support examiners 
with little experience in making referrals effectively and 
optimize utilization of services.
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