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Abstract
Background This study evaluated if genetic variations in the WNT family members and RUNX2 are associated with 
craniofacial maturation, investigating dental and skeletal maturity in children and teenagers.

Methods Radiographs from pre-orthodontic treatment of Brazilian patients (7 to 17 years-old) were used to assess 
dental (panoramic radiographs) and skeletal maturity (cephalometric radiographs). The chronological age (CA) was 
calculated based on the date of birth and the time the radiographs were performed. For the dental maturity analysis, 
the Demirjian (1973) method was used and a delta [dental age - chronological age (DA-CA)] was calculated. For the 
skeletal maturity analysis, the Baccetti et al. (2005) method was used and the patients were classified as “delayed 
skeletal maturation”, “advanced skeletal maturation” or “normal skeletal maturation”. DNA isolated from buccal cells was 
used for genotyping of two genetic variations in WNT family genes: rs708111 (G > A) in WNT3A and rs1533767 (G > A) 
in WNT11; and two genetic variations in RUNX2: rs1200425 (G > A) and rs59983488 (G > T). A statistical analysis was 
performed and values of p < 0.05 indicated a significant difference.

Results There were no associations between dental maturity and genotypes (p > 0.05). In the skeletal maturity 
analysis, the allele A in the rs708111 (WNT3A) was statistically more frequent in patients with delayed skeletal 
maturation (Prevalence Ratio = 1.6; 95% Confidence Interval = 1.00 to 2.54; p-value = 0.042).

Conclusions The rs708111 in the WNT3A gene impacts on skeletal maturation.
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Background
The success of orthodontic treatment in children and 
teenagers depends on an accurate evaluation of a patient’s 
growth stages, once the treatment of skeletal malocclu-
sions is influenced by growth [1, 2]. Craniofacial growth 
and development in humans are controlled by complex 
processes with several and constant interactions among 
different molecular factors [3]. These events are geneti-
cally determined from the individuals’ conception to 
their maturation [4, 5].

Biological indicators of growth are useful biomarkers 
to evaluate the growth stages of children and teenagers 
and to diagnose changes in growth pattern [6]. The den-
tal maturation analysis rates the degree of maturation of 
teeth using image examinations [7–9]. Skeletal matura-
tion analysis by cephalometric radiograph has received 
growing interest as a biological indicator of bone matu-
ration in the past years. The morphological changes of 
cervical vertebrae during growth has been used as a bio-
logical indicator for assessing skeletal maturation in orth-
odontic patients [10, 11].

Wnt signaling pathway orchestrates an essential role 
in the development and homeostasis of several tissues 
[12]. WNT signaling members, in the canonical pathway, 
inhibit the degradation of β-catenin, a transcriptional 
activator that regulates the expression of important 
genes for craniofacial bone and dental development [12]. 
WNT3A is one of the most studied canonical members 
[13], that presents an involvement in both osteogen-
esis- and odontogenesis-related cell differentiation [14]. 
Non-canonical Wnt signaling is calcium-dependent with 
activation of WNT11 promoting bone and dental mor-
phogenesis [13, 15, 16]. The canonical and noncanonical 
WNT pathways stimulate RUNX2 expression [17, 18]. 
RUNX2 is an important protein in dental and skeletal 
development [19, 20], and WNT3a and WNT11 enhance 
the expression and function of RUNX2, promoting osteo- 
and odontoblastic differentiation [21, 22].

Several factors have been associated with variations in 
dental and bone development, such as nutritional factors 
[23–25] and hormonal deficiencies [26, 27]. However, the 
role of genetic variations on craniofacial bone and dental 
development have been poorly explored [28, 29]. Genetic 
variations in WNT3A, WNT11 and RUNX2 have already 
been associated with skeletal malocclusions [28] and may 
also be associated with bone and dental maturity. There-
fore, this study evaluated the association between cranio-
facial maturation and genetic variations in WNT family 
members and RUNX2, investigating dental and skeletal 
maturity in children and teenagers.

Methods
This cross-sectional study followed the Strengthening the 
Reporting of Genetic Association study (STREGA) state-
ment checklist [30]. This project was previously approved 
by the Human Ethics Committee of the University of 
************************* (01451418.3.0000.5419). Patients 
whose legal guardian consented to their participation, 
and those who gave assent to study participation, were 
eligible to participate.

Two sample-size calculations were performed 
through G*Power Version 3.1.9.6 (Franz Faul, Univer-
sität Kiel, Germany). The difference between two inde-
pendent means with the parameters of alpha = 5% and 
power = 80% was used for both calculations. The first 
calculation for skeletal maturation predicts a minimum 
sample 100 patients (Cohen’s D = 0.37), considering 20% 
of loss rate. The effect size was obtained from the data by 
Costacurta et al. [31]. The second calculation for dental 
maturation predicts a minimum of 77 patients (Cohen’s 
D = 0.72), considering a loss rate of 20%. The effect size 
was obtained from Hilgers et al. [32].

Brazilian children and teenagers 7 to 17 years-old, 
both genders, biologically unrelated, and undergo-
ing orthodontic treatment were screened from 2015 to 
2017. Patients with previous orthodontic and/or ortho-
pedic treatments, previous craniofacial trauma, con-
genital alterations, and/or metabolic disorders were not 
included.

The chronological age (CA) of each individual was cal-
culated based on the date of birth on official documents 
and the time the radiographs were performed.

Dental maturity analysis
For the dental maturity analysis, panoramic radiographs 
from patients between 7 and 16 years-old were assessed. 
The Demirjian et al. [8] method was used to investigate 
the dental maturation and to establish dental matu-
rity. 10% of the radiographs were assessed twice by two 
observers, which were trained by a senior orthodontist. 
Weighted Cohen’s Kappa test was performed to each 
evaluated tooth to test intra- and inter-observer reliabil-
ity. The Kappa scores ranged from 0.82 to 1.00 for intra-
observer reliability and 0.79 to 1.00 for inter-observer 
reliability.

If a missing tooth (dental agenesis) was found in the left 
side, the contralateral permanent tooth of the right side 
was evaluated. The child was excluded from the study 
if bilateral congenital agenesis was found. Dental matu-
rity was measured subtracting the dental age (DA) from 
chronological age (DA - CA). Values close to or equal to 0 
indicate that patient have dental maturity coincident with 
the chronological age. Values far from 0 indicate that the 
patient has a delayed (negative values) or advanced (posi-
tive values) dental maturity.
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Skeletal maturity analysis
For the skeletal maturity analysis, cephalometric radio-
graphs from patients aged 7 to 17 years-old were 
assessed. The method according to Baccetti et al. [33] 
was used to investigate skeletal maturation. 10% of the 
radiographs were assessed twice by two observers, which 
were trained by a senior orthodontist. Weighted Cohen’s 
Kappa test was performed to test the intra- and inter-
observer reliability, which was equal to 0.783 and 0.823, 
respectively.

The patients were classified as “delayed skeletal matura-
tion”, “advanced skeletal maturation” or “normal skeletal 
maturation” depending on the result of Baccetti’s analy-
sis and chronological age. The study of Schoretsaniti et 
al. [34] was used to establish a parameter to this classi-
fication for boys and girls separately, which is shown in 
Table 1.

DNA extraction and genotyping
Genomic DNA isolated from buccal epithelial cells was 
used for genotyping analysis. The saliva samples were col-
lected from each child using saline solution, which was 
used to rinse [33]. Genomic DNA was then extracted as 
previously described [35]. The concentration and purity 
of the genomic DNA was determined by spectrophotom-
etry (Nanodrop 1000; Thermo Scientific, Wilmington, 
DE, USA).

Two genetic variations in WNT family genes, rs708111 
(G > A) in WNT3A and rs1533767 (G > A) in WNT11, 
and two genetic variations in RUNX2, rs1200425 (G > A) 
and rs59983488 (G > T), were chose. These genetic vari-
ants were selected due to their potential relevance in 
osteogenesis and odontogenesis-related cell differentia-
tion [28, 36]. Genotyping was blindly performed with the 
Taqman™ method for real-time PCR in the StepOnePlus™ 
(Applied Biosystems™, Foster City, CA, USA) as previ-
ously described [35]. 10% of the sample were genotyped 
twice and an agreement of 100% was observed.

Statistical analysis
Dental maturity (delta DA - CA) was evaluated as a 
continuous variable, while skeletal maturity was evalu-
ated as a categorical variable. Mann-Whitney U test 
was used to compare dental maturity between genders, 
and Chi-square test was used to compare skeletal matu-
rity between genders using IBM SPSS version 25.0 (IBM 
Corp. Armonk, USA). Chi-square test was also applied to 
calculate the Hardy-Weinberg equilibrium.

To determine the agreement between CA and DA, a 
Bland-Altman analysis was performed. A Bland-Altman 
plot was generated (Fig.  1) and a linear regression was 
performed to evaluate proportional bias between CA and 
DA [37]. The linear regression indicated that a bias exists 
between CA and DA estimated by Demirjian (p = 0.018) 
that shows an overestimation of the method.

The allelic and genotypic distributions between skeletal 
maturation groups were performed by PLINK 1.9 soft-
ware using chi-square or Fisher tests. Prevalence Ratios 
(PR) and 95% Confidence Intervals (95% CI) were calcu-
lated for genotype distribution among skeletal maturity 
groups. Mann-Whitney U test was applied for dental 
maturation values according to the genotypes.

Values of p < 0.05 indicated a statistically significant 
difference.

Results
The Fig. 2 shows the flow diagram for both sets. Among 
the 152 patients screened, 79 were included for the den-
tal maturity set, and 101 were included for the skeletal 
maturity set. Table  2 shows the comparison of skeletal 
maturity and dental maturity between genders. There are 
no differences between gender in both sets (p > 0.05). The 
Demirjian method overestimated the age of patients in 
0.75 years, on average.

The studied genetic variants were within the Hardy-
Weinberg equilibrium (p > 0.05).

The studied genetic variants in WNT3A, WNT11 
and RUNX2 were not associated with dental maturity 
(p > 0.05). The results are presented in the Table 3.

Table 4 shows genotype and allele distribution among 
skeletal maturity groups. For rs708111 (WNT3A), the 
allele (A) was statistically more frequent in patients with 

Table 1 Estimated age for the boys and girls for each skeletal maturation score
Baccetti’s Scores CS1 CS2 CS3 CS4 CS5 CS6
Estimated Age for the boys < 10 10 to 11 11 to 12 12 to 15 15 to 17 > 17

Estimated Age for the girls < 9 9 to 10 10 to 11 11 to 14 14 to 17 > 17
Note: This estimation was interpreted according to Schoretsaniti et al. (2021). CS means cervical stage

Fig. 1 Bland-Altman Plot
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delayed skeletal maturation than the wildtype allele (G) 
(PR = 1.6; 95% CI = 1.00 to 2.54; p = 0.042). There was no 
association between skeletal maturity and the genetic 
variants rs1533767 (WNT11), rs1200425 and rs59983488 
(RUNX2).

Discussion
In order to successfully treat patients, orthodontists 
require a comprehensive understanding of craniofacial 
growth and development. This knowledge allows them to 
identify specific growth phases and accurately estimate 
the remaining growth, aiding successful treatment out-
comes. Therefore, the orthodontist needs to analyze the 
developmental status of each patient [1]. Although it is 
well known that genes play an important role in growth 
and development [38, 39], the function of key genes on 
dental and skeletal maturity have not been completely 
investigated yet. Thus, in the present study, we investi-
gated if genetic variations in WNT family members and 
RUNX2 impact dental and skeletal maturation.

Demirjian’s method [8] is the most widespread method 
to assess dental maturation / dental age, and was used 
to assess dental maturity in our study. However, the 
overestimation of the method is an important bias not 
only observed in this study, but also in another Brazil-
ian sample [40], and in a systematic review with global 

population [41]. The overestimation may explain the pro-
portional bias in this study between CA and DA shown 
through Bland-Altman analysis. The overestimation may 
also be due to the fact that the method being created to 
a French–Canadian data set. Genetic, socioeconomic 
and environmental variations observed in different coun-
ties may generate inconsistencies in this method, when 
applied in other populations [41].

The skeletal maturation assessment through morpho-
logic alterations in cervical vertebrae has been receiving 
growing interest in clinical orthodontics, since it pre-
vents an additional X-ray exposition for the patient and 
the pubertal spurt of facial bones coincides with the spurt 
of skeletal growth [1, 2]. Although the method is not 
considered the gold standard and the reproducibility is 
questionable [2], Baccetti’s method is used worldwide to 
predict the remaining growth of children and teenagers. 
In this study, we complement Baccetti’s method with the 
investigation of Schoretsaniti et al. [34], which observed 
a mean and confidence interval of chronological age for 
each stage of growth according to Baccetti. We observed 
that 42.60% of the sample were classified with a skel-
etal maturation alteration, in which 27.70% classified as 
delayed skeletal maturation.

WNT3A and WNT11 are important signalizing media-
tors involved in the transcription activation of many 
genes [42], such as RUNX2 [21]. These proteins have 
already been associated with osteogenesis- and odon-
togenesis-related cell differentiation [14–16]. WNT3A 
induces dental follicle cell differentiation in cemento-
blastic/osteoblastic cells, acting directly in tooth and 
bone development in murine model [14]. WNT11 is 
also involved in odontoblast and osteogenic cell dif-
ferentiation [15, 16]. Moreover, in vitro studies demon-
strated that WNT11 and WNT3A are associated with the 
increase in expression and function of RUNX2 [17, 18]. 
When added exogenously in cultured rat primary osteo-
blast and mesenchymal stem cells, WNT3A and WNT11 
elevate the levels of RUNX2, which promotes osteoblas-
tic differentiation and mineralization [17, 18]. Interest-
ingly, β-catenin, the central component of the WNT 
canonical pathway, was associated with odontoblastic 

Table 2 Characteristics of the both studied sets
Sample Variables Total Male Female p-value
Dental Maturity N (%) 79 (100) 35 (44.30) 44 (55.70)

Chronological Age - mean (SD) 12.57 (1.68) 12.41 (1.81) 13.14 (1.58) 0.485¹

Delta (DA-CA) - mean (SD) 0.75 (0.90) 0.72 (0.90) 0.77 (0.91) 0.339¹

Skeletal
Maturity

N (%) 101 (100.0) 44 (43.56) 57 (56.44)

Chronological Age - mean (SD) 15.17 (7.39) 15.36 (7.40) 14.98 (7.42) 0.376¹

Skeletal maturation status distribution – n (%) Normal 58 (57.40) 22 (50.00) 36 (63.16) 0.093²

Delayed 28 (27.70) 17 (38.64) 11 (19.30)

Advanced 15 (14.90) 5 (11.36) 10 (17.54)
Notes: 1Mann-Whitney test was performed. 2Chi-square test was performed. * statistical significance (p < 0.05)

Fig. 2 Flow diagram for both sets
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differentiation of dental pulp cells through RUNX2 acti-
vation [22]. The association between RUNX2 and WNT 
noncanonical pathway on dental development is still 
under investigation, however, the proteins have already 
been separately associated with odontoblastic differen-
tiation [19, 43]. In this way, we hypothesized that genetic 
variations in WNT3A, WNT11 and RUNX2 might impact 
dental and skeletal development and maturation time.

We investigated only one genetic variation in WNT3A 
and WNT11 genes, which can be a limitation of this 
study. The variant allele (A) of the rs708111 (WNT3A) 
has already been associated with growth patterns/skel-
etal malocclusion [28]. In our study, this allele was asso-
ciated with delayed skeletal maturation. The rs708111 
(WNT3A) variant is located in a regulatory region [44], 
thus, it is reasonable to hypothesize that this variation 
alters the expression of WNT3A mediator and impact 
the skeletal development [45]. The rs1533767 in WNT11 
gene is a silent mutation [44]. This variation may change 
the mRNA processing impacting the exonic splicing 
enhancer [45]. This variant has already been associated 
with skeletal pattern [28], and as a protective factor for 

oral cancer [36]. In this study, the rs1533767 in WNT11 
was not associated with dental nor skeletal maturity. It 
is possible to hypothesize that other genetic variations 
in WNT family members affect dental maturity. There-
fore, future studies should focus in the evaluation of the 
impact of these genes on dental maturity.

The genetic variations rs1200425 and rs59983488 in 
RUNX2 were previously associated with skeletal maloc-
clusion [28] and were selected for investigation in this 
study. The rs1200425 is an intronic variant that may 
induce aberrant mRNA splicing, and rs59983488 is an 
upstream variant, which is located 5’ UTR of the gene 
[39]. An upstream variant may affect directly the gene 
expression level [28]. In this study, these genetic variants 
were not associated with dental and skeletal maturation. 
Due to the impact of these variants on craniofacial devel-
opment showed by previous results [28, 46], future stud-
ies should investigate their impact on dental and skeletal 
phenotypes in other populations.

Table 3 Means of delta (DA-CA) according to the genotypes for the dental maturity set
Genetic variations
(Gene)

Model Genotype n Median 25th Percentile 75th percentile p-value

rs708111 (WNT3A) Co-Dominant GG 22 0.415 -0.160 0.748 Ref.

AG 33 0.801 0.474 1.547 0.235

AA 18 0.670 0.189 1.316 0.946

Dominant GG 22 0.415 -0.160 0.748 Ref.

AG + AA 51 0.745 0.243 1.510 0.385

Recessive GG + AG 55 0.643 0.221 1.033 Ref.

AA 18 0.670 0.189 1.316 0.630

rs1533767 (WNT11) Co-Dominant GG 31 0.595 0.194 0.930 Ref.

AG 25 0.643 0.128 1.547 0.614

AA 2 0.782 0.626 0.939 0.136

Dominant GG 31 0.595 0.194 0.930 Ref.

AG + AA 27 0.643 0.128 1.547 0.882

Recessive GG + AG 56 0.599 0.187 0.958 Ref.

AA 2 0.782 0.626 0.939 0.098

rs1200425 (RUNX2) Co-Dominant GG 30 0.679 0.126 1.033 Ref.

AG 26 0.397 0.128 0.985 0.480

AA 14 0.609 0.284 0.875 0.724

Dominant GG 30 0.679 0.126 1.033 Ref.

AG + AA 40 0.573 0.156 0.957 0.499

Recessive GG + AG 56 0.616 0.127 1.009 Ref.

AA 14 0.609 0.284 0.875 0.965

rs59983488 (RUNX2) Co-Dominant GG 55 0.602 0.115 1.033 Ref.

TG 13 0.745 0.605 0.967 0.245

TT 2 0.116 -0.121 0.352 0.321

Dominant GG 55 0.602 0.115 1.033 Ref.

TG + TT 15 0.712 0.352 0.967 0.479

Recessive GG + TG 68 0.619 0.187 1.009 Ref.

TT 2 0.116 -0.121 0.352 0.253
Notes: Mann-Whitney test was performed
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Conclusion
The rs708111 in WNT3A gene impacts the skeletal matu-
ration. This genetic variation may predict skeletal matu-
ration delay and impact the orthodontic treatment plan. 
In the future, orthodontists may be able to use genetic 
biomarkers to predict the growth potential of each 
patient.
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Table 4 Genotype distribution among skeletal maturity groups
Genetic 
variation
(Gene)

Model Genotype Normal Delayed p-value
(Normal vs. 
Delayed)

Advanced p-value
(Normal vs. 
Advanced)

n % n % n %

rs708111 
(WNT3A)

Co-Dominant GG 18 33.96 5 19.23 Reference 1 6.7 Reference

AG 23 43.40 10 38.46 0.685 10 66.7 0.064#

AA 12 22.64 11 42.31 0.066 4 26.6 0.096

Dominant GG 18 33.96 5 19.23 Reference 1 6.7 Reference

AG + AA 35 66.04 21 80.77 0.175 14 93.3 0.064#

Recessive GG + AG 41 77.36 15 57.69 Reference 11 73.3 Reference

AA 12 22.64 11 42.31 0.070 4 26.7 0.747

Allele G 59 55.66 20 38.46 Reference 12 40.00 Reference

A 47 44.34 32 61.54 0.042* 18 60.00 0.131

rs1533767 
(WNT11)

Co-Dominant GG 25 60.98 7 38.89 Reference 6 50.0 Reference

AG 13 31.71 11 61.11 0.059 6 50.0 0.330

AA 3 7.32 0 0.00 † 0 0.0 †

Dominant GG 25 60.98 7 38.89 Reference 6 50.0 Reference

AG + AA 16 39.02 11 61.11 0.116# 6 50.0 0.501

Recessive GG + AG 38 92.68 18 100.00 Reference 12 100.0 Reference

AA 3 7.32 0 0.00 † 0 0.0 †

Allele G 63 76.82 25 69.44 Reference 18 75.00 Reference

A 19 23.18 11 30.56 0.398 6 25.00 0.853

rs1200425 
(RUNX2)

Co-Dominant GG 20 37.74 7 30.43 Reference 6 42.86 Reference

AG 24 45.28 8 34.78 0.826 7 50.00 0.785

AA 9 16.98 8 34.78 0.266 1 7.14 0.709#

Dominant GG 20 37.74 7 30.43 Reference 6 42.86 Reference

AG + AA 33 62.26 16 69.57 0.541 8 57.14 0.726#

Recessive GG + AG 44 83.02 15 65.22 Reference 13 92.86 Reference

AA 9 16.98 8 34.78 0.087 1 7.14 0.358

Allele G 64 60.38 22 47.83 Reference 19 67.86 Reference

A 42 39.62 24 52.17 0.151 9 32.14 0.468

rs59983488 
(RUNX2)

Co-Dominant GG 18 34.62 11 44.00 Reference 7 50.00 Reference

TG 13 25.00 3 12.00 0.320 4 28.57 0.972

TT 21 40.38 11 44.00 0.982 3 21.43 0.321

Dominant GG 18 34.62 11 44.00 Reference 7 50.00 Reference

TG + TT 34 65.38 14 56.00 0.763# 7 50.00 0.292#

Recessive GG + TG 31 59.62 14 56.00 Reference 11 78.57 Reference

TT 21 40.38 11 44.00 0.426# 3 21.43 0.190#

Allele G 49 47.12 25 50.00 Reference 18 64.29 Reference

T 55 52.88 25 50.00 0.737 10 35.71 0.106
Notes: Normal group was used as control for comparisons. Chi-square test was performed, except p-values with #, which was performed by Fisher test. * statistical 
significance (p < 0.05). † means that the test was not performed
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